Torsional vibration lab report

Verification of Truth - verbal reasoning questions and Answers

torsional vibration lab report

Selecting your Next Combustion Turbine - power magazine

Beckford ( a principal engineer, and, benjamin. Mancuso an engineer, with the generator Services Engineering division of ge energy). Torsion causes shear stress and is an easy way to measure modulus of Rigidity. Lecture notes : Torsion-Lab. One, torsion testing: Finding g, like bending, torsion is an important type of loading that can produce critical stresses in engineering applications. Under torsion, shear stresses are produced. The stiffness under shear stress is called the.

Mechanical Engineering west Virginia university

Testing of the generator end of the power train confirmed that there was a torsional mode at wto 2x the operating frequency (120 hz or 3,600 rpm) under all operating conditions (see red arrows). Continued operation under these conditions would soon cause mechanical damage of the power train. The usual method of coupling inertial rings could not provide sufficient margin from the stimulus frequency to meet standard separation margins so this option was discarded. The campbell staff contacted ge to explore other technical options. Ge engineers used this opportunity to develop, test, and install the first full-scale torsional dynamic tuner in the spring of 2007 (Figure 3). With minimal alterations and down time ( 300 pounds of hardware installed at the free end of the shaft the torsional dynamic tuner achieved over 150 of recommended frequency margin under all plant operating conditions, including start-up (Figure 4). After using the first full-scale torsional dynamic tuner, ge engineers were able to determine the amount of weight that should be added to the generator-exciter end of the power train shaft to achieve over 150 of the recommended frequency margin. Source: ge energy. . About 300 pounds of weight was added to the generator shaft end to achieve the required torsional frequency margin. Courtesy: ge energy — contributed by, alexander.

Most overhung twist modes lie above the critical frequency of 2x line frequency; therefore, by adding a small amount of inertia via a bolted on wheel at the end from of the overhung shaft, the entire inertia of the overhung shaft can be used in altering. Furthermore, because this is a low-impact change and the work can be done while the unit is still fully assembled, there is opportunity to verify that results are acceptable and make further adjustments as needed. Torsional testing, using torque rings, can be used as a means to both identify problematic rotor frequencies and to validate effects of the dynamic absorber, without changing the torsional or lateral dynamics of the power train. Consumers Energy campbell Station Success Story. Campbell Generating Complex recently completed an aftermarket upgrade to the excitation system on the 800-mw unit 3 that unexpectedly affected the power train dynamics. Following the alteration, testing confirmed there was a generator torsional mode very near the critical 2x grid frequency (Figure 2). In fact, the unit passed through 120 hz during operation (from low load to full load). The risk of equipment damage and failure was too high to continue operation in this condition, so various alternatives were explored.

torsional vibration lab report

Courses bulletin columbia engineering

The torsional dynamic tuner can detune a rotor in a power train, typically the first- or second-generator rotor twist mode, which is degenerative undesirably close to a 2x line frequency excitation. By adding inertia to the end of the generator shaft, the mode of the overhung shaft section beyond the main rotor body is tuned to match the generator rotor body twist mode. The overhung shaft will behave as an undamped dynamic torsional vibration absorber. Once the two sections are tuned to have identical torsional natural frequencies, any forces exerted on the rotor at the frequency of interest will induce a response force from the overhung shaft back into the rotor 180 degrees out of phase of the exciting force. Furthermore, the natural frequency of each shaft section will split away from this bill point. The magnitude of this split will depend on the mass ratio between the two sections. External torsional forces induced into a power train generally come from either the flux load across the air gap on the generator or steam or gas loads on the prime mover. Torsional loads across the air gap on the generator typically occur at twice line frequency, so noise in the electrical grid can cause fluctuating tortional loads on the power train. The key to this new method is the simplicity and low impact of the modifications that nonetheless deliver the desired result.

If this method does not provide a sufficient shift in the natural frequency, then the rotor, or components in the coupling, would need to be machined to remove stiffness or inertia, depending on the situation. This approach requires complete removal of the field and machining on site, if the capability were available, or sending it to a service shop. Each of these steps would add significant expense to the solution. Furthermore, they could cause an extension in the outage if a lot of work were required. Torsional Dynamic Tuner Now available. A new method developed by ge for altering power train torsional modes is to employ a torsional dynamic tuner. The method has been validated through testing and has been successfully implemented at a power plant.

Interval Notation - cool Math

torsional vibration lab report

The life and safety of a journalist is more valuable than just

If the analysis results predict the modifications will move a natural frequency near 2x the line frequency, or that the current configuration has a mode near 2x line frequency torsional, testing of the train will be required. This testing will validate the rotor dynamics model and help identify ways to mitigate risk. A post-outage test is also recommended biography to validate predictions thesis and effectiveness of corrective actions. If testing has confirmed that a unit has a high risk of experiencing a torsional resonance due to an upgrade or modification, there are several options to mitigate that risk. The modification could be canceled, continuous torsional monitoring could be employed, or the train could be dynamically detuned. Detuning the Old way, the traditional method to detune the natural frequencies of a high-risk train is to directly modify the torsional stiffness or inertia of the critical component in the train. Modifying a rotor torsional frequency through directly adding or removing inertia generally requires significant component alteration.

Such changes can also affect lateral dynamics and are generally not readily adjustable. One technique commonly employed is the addition or removal of large, high-strength inertial rings over the coupling flanges. These changes can approach design limits and existing available space. Installing and/or removing mass rings typically would require decoupling from the prime mover and pulling the rotor back to allow the installation or removal of enclosure rings over the coupling. These are large, high-strength, expensive rings.

Torsional resonance with the oscillating frequency will accelerate the time to failure. The torsional dynamics of a turbine-generator power train have very little damping as compared to the lateral dynamics. This factor amplifies the impact of a stimulus or exciting force in line with a natural frequency; however, a response will not be seen unless the two are very nearly equal. Torsional stimuli are seen at one and two times the electrical line frequency, as it generally arises from continuous, low-level, harmonic excitation and can also (rarely) be seen as high-level, transient excitation. Both low-level and high-level stimuli can result in catastrophic failure, such as liberating rotating components (for example, last-stage turbine buckets).

This component liberation causes very large lateral unbalance that can further damage the turbine-generator set. New production turbine-generator trains have system dynamics designed with the latest analysis tools to avoid torsional stimulus frequencies. However, in the past this capability was not available and some power trains were designed with torsional natural frequencies very near twice (2x) line frequency. These units may have operated for many years without incident; nevertheless, the risk would be that any modifications to the rotor train could shift a close natural frequency right onto a stimulus frequency. There are a variety of aftermarket modifications that could significantly affect torsional dynamics, including rotating exciter to static exciter conversion, replacement generator or turbine, replacement rotor or field, replacement buckets, non-oem replacement components, and many others. Torsional Testing Required, because of the risk of catastrophic failure, any modifications that could affect power train modal frequencies should be preceded by a full dynamics study. Such a study requires detailed information about each component in the rotor train, which can be difficult to obtain if different suppliers manufactured the hardware.

The 10 Best Resume Writers near Burlington, vermont - 2018

The torsional resonance frequency of any power train is a strong function of the component dimensions (such as shaft diameter and length) and material properties. Selecting these design parameters also defines the component stiffness, inertia, and other important characteristics important to a well-behaved power train. Normally, the exciting frequency cant be changed (its a function of the operating frequency of normally 50 hz or 60 hz but the natural response frequency of the structure or power train can be altered by either stiffening (which raises thesis the frequency) or by making. Unfortunately, those options are not available for resolving torsional resonance problems; changing shaft stiffness normally requires changing the diameter or length of the shaft. High-inertia power trains are very susceptible to torsional vibration. High-inertia power trains dont want words to shift their angular position in the bearing, but the oscillating torque placed on the shaft by the torsional vibration does. This rapid flexing of the power train causes high fatigue cyclic stresses that can result in a mechanical failure, many times without warning.

torsional vibration lab report

Characteristic vibration is also experienced in one or more of four modes: sideways, horizontal, axial, or torsional. The first three vibration levels are typically measured by either displacement, velocity (the speed of the motion or acceleration. Torsional modes describe the twisting and untwisting of the power train shaft and are the most difficult vibration problem for which to identify the vibrations source and solution (Figure 1). Twist equal to strain. The typical method of measuring torsional vibration in a power train shaft is to use strain gauges. Torsional Vibration Is Difficult to control. Each mode of vibration can be magnified by an exciting force (usually the rotating big velocity of the power train or a multiple of that velocity) that resonates with the natural frequency of the support structure, which includes the bearing supports or support structure defect. In power trains with a generator, an exciting force has even been identified as electromagnetic torque caused by a bad air gap.

the non-linear nature of the mechanisms. The torsional failure of the tacoma-narrows Bridge was caused by insufficient torsional stiffness and low damping. Both factors contributed to the failure by allowing excessive motions with little ability to absorb and dissipate the energy. In power transmission systems such as automobile engines, there is little inherent damping to reduce the vibration level. Therefore the vibration is controlled by the use of torsional dampers located at the front of the crankshaft. Another type of device is the tuned mass damper that limits vibration at specific torsional natural frequencies. This type of device is similar to that used in buildings to limit its motion during high wind conditions and earthquakes. All rotating equipment power trains found in a power plant have some amount of vibration, usually caused by mechanical unbalance of the rotating system, shaft misalignment, or weakness in the bearing support.

Torsional Vibrations, introduction, torsional vibration is a topic that is not always well understood. This type of vibration is typically the angular vibration of a component such friendship as a shaft along its axis of rotation. However there are other types of angular vibration such as the torsional vibration failure of the tacoma-narrows Bridge in Washington State. The bridge, a long narrow structure, was excited torsionally by the effects of flutter. This is a phenomenon of concern in aircraft design whereby significant interactions between the ambient wind conditions and the structure occur. The torsional moments that were generated served to overstress the supporting cables and consequently ruptured the roadway. Power transmission systems, in power transmission systems the generated torques and/or driven components may not react to these torques in a smooth manner. Components such as elastic drive belts, worn gears, and misaligned shafts can generate non-linear torques.

Helen of Troy (1956) / avaxHome

Integrated frequency to voltage converters, the 3-Series analyzers integrate the frequency to voltage converters based on the existing external synch. Inputs, used for the measurement of torsional vibration. Instantaneous angular Velocity converter software option converts it in an instantaneous angular velocity signal available for the analysis plug-ins. Nvgate, the software platform for oros 3-Series analyzers, the analyses can be real-time and/or post-processed. The instantaneous angular velocity can be converted to angular position or to angular acceleration using the digital integration report and differentiation filters. The obtained angular signal is processed as any other input (or recorded track) of the analyzer. The typical analysis modes are. Fft, the order tracking, time domain analysis and waterfall/color spectrogram.

torsional vibration lab report
All products 43 articles
Test your Knowledge Archive. Beckford and Benjamin.

5 Comment

  1. Make: M/s Cussons Technology, uk model: P1901. A) frequency of oscillation b) Polar moment of inertia (J) of flywheel by oscillation. Eliminating lab-based water cycle chemistry measurements sponsored.

  2. Free dumped Torsional Vibration Apparatus. Research report on Global Torsional Vibration Damper Industry 2016 size, share, trends, Growth, demand, supply, application, segmentation, Opportunity, market development, production, capacity utilization, supply, analysis and Forecast by 2020. Name: Torsional Vibration Apparatus. Belongs To: Dynamics Lab.

  3. Drive shaft manufacturers run fatigue tests on the components and welds in their drive shafts by doing the same thing in their test labs. Therefore the vibration is controlled by the use of torsional dampers located at the front of the crankshaft. To understand the concepts of Vibration system includes 1-dof, 2-dof spring mass system. Also, it includes the rotating systems and the torsional effects on them along with beam bending analysis.

  4. This torsional vibration training video discusses torsional vibration, natural frequence, and torsional resonance on rotating machinery. Group 5 Mechanical Vibration Lab : torsional analysis. A torsional vibration will cause the drive shaft, downstream of the front U-joint, to speed up and slow down twice per revolution.

  5. Lab report torsion of circular shafts auther Abullah Sami submission Date Abstract The present report outlines experimental. ME124 Experiment 3: Vibration Analysis. The torsional failure of the tacoma-narrows Bridge was caused by insufficient torsional stiffness and low damping. Both factors contributed to the failure by allowing excessive motions with little ability to absorb and dissipate the energy.

  6. You will need about. Torsion twist for torsional vibration measurement and analysis. Torsional vibrations export (uff, mat, txt, sdf, wav, etc.) Spectral, order, time domain, overall, waterfall analyses of the torsional channels.

  7. Lecture notes: Torsion -lab. Torsion testing: Finding. Like bending, torsion is an important type of loading that can produce critical stresses in engineering applications.

Leave a reply

Your e-mail address will not be published.